China best Flexible Shalft Coupling for Excavator Industrial Machine Servo Motor Coupling

Product Description

Product description 

Material

 Materials for silicon,fluorine,NBR,FPM,EPDM,SILCONE ACM,HNBR
Inspection Equipments  Excellent chemical and physical property, excellent oil- resistance, high temperature stability, etc.
Tolerance  +/-0.05mm
Drawing Format  PDF/DWG/DXF/IGS/STEP,etc
Application field  Parts are used on vehicles, printing machines, food processing machines, textile machines, electronic machines, etc.
Manufacturing  process  CNC machining Broaching, Drilling, Milling, Other Machining Services, Rapid Prototyping, Turning,
Shape  As per your drawing Or your sample
Color service   Customization
QC inspection

 Make sure 100% inspection before the delivery

Advantages Maintenance,acturally HRC coupling doesn’t need maintenance.
Environmental, elastic components make HRC coupling applies to a variety of working conditions.

Reliable transmission, in case of elastic component is damaged, the dog segment wichcasted siamesedly still keep the transmission processing reliably.

Economic, HRC couplings have already been made of optimization design,which make transmission power match the transmission shaft diameter.

Good recovery capacity, elastic components can reduce the load at the CHINAMFG moments, and the deviation is a major consideration when designing.

Adaptability of misalignment, HRC can coupling contains parallel shift, angle shift and axis shift which happen some times.

Application and analysis

Our warehouse

Custom rubber parts

Custom plastic parts

Packing & Delivery

Packaging Details: plastic bag packing inside, carton packing outside, or customized packing.
Port:Xihu (West Lake) Dis.g port, ZheJiang city.
Lead Time :

Quantity(Pieces) 1 – 1000 1001 – 10000 10001 – 50000 >50000    
Est. Time(days) 5 12 18 To be negotiated  

 

Place order steps

Our Services:

1. Convenient: 24th Hours sales/After-sales Service online or on the phone.

2. Quality Assurance: We will discuss with you and supply you the best quality comfortable to your market.

3. Quick delivery: Time is money, we promise we always will deliver the goods quicker than others.

4. According to customers’ drawing,customized specifications are welcomed.

5. Small orders can be accepted.

Packing

Company Profile

SHEN ZHOU CHINAMFG RUBBER & PLASTIC CO.,LTD was founded in 2000. The factory located in industrial zone of HangZhou city, ZheJiang province, china.

We have Plastic injection molding workshop and rubber compression molding workshops.Our main products includes Bakelit Knobs,Pull Handle,rubber door stops, door guard, roller, rubber bumpers, Rubber grommets, vibration dampers, seals, plastic corner, injection plastic brackets, injection plastic shell.to undertake various kinds of rubber molding and plastic injection parts, customize according to drawing and samples. 

The products have been exported to America, Europe, Oceania, Middle East, Southeast Asia and other regions and countries, and hope to build more business Cooperation with new client from all over the world.

FAQ

Q1: Are you a manufacturer or a trading company?

A1: We are the original manufacturer of custom rubber parts and custom plastic parts.

Q2: Where is your company located?

A2: Our company is located in HangZhou City, ZheJiang Province, China.

Q3: Could I get free samples?

A3: We could provide small samples for free, but air freight or sea freight should be borne by customer side.

Q4: What should I provide in order to get an offer?

A4: Customers are required to provide material, inner diameter, outer diameter, cross section distance and quantity.

Q5: How is the goods packed by your factory?

A5: The goods are normally packed by plastic bags, carton boxes with pallets or wooden boxes.

Q6: What are the incoterms applied?

A6: The incoterms applied are FOB, CIF and CFR.

Q7: What are the payment terms accepted?

A7: We accept Alibaba Trade Assurance, T/T, L/C and West Union.

Q8: What about the delivery time?

A8: The goods are normally dellivered to customer side within 7-30 days based CHINAMFG the mode of transport required.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Industrial coupling

Key Factors to Consider When Designing Industrial Couplings for Specific Applications

Designing industrial couplings for specific applications requires careful consideration of various factors to ensure optimal performance, reliability, and safety. Here are some key factors that engineers and designers should take into account during the coupling design process:

  • Application Requirements: Understand the specific requirements of the application, including torque and speed requirements, operating conditions (e.g., temperature, humidity), and the type of machinery being connected.
  • Power Transmission Capacity: Calculate the required torque capacity and ensure that the selected coupling can safely handle the expected torque loads without exceeding its limits.
  • Shaft Misalignment: Consider the potential misalignment between the connected shafts. Choose a coupling type that can accommodate the expected misalignment while maintaining efficient power transmission.
  • Space Limitations: Assess the available space for the coupling installation. Select a compact and appropriately sized coupling that fits within the space constraints without compromising performance.
  • Environmental Conditions: Evaluate the environmental conditions in which the coupling will operate. Factors such as temperature, humidity, dust, and chemical exposure can influence the choice of materials and lubrication requirements.
  • Dynamic Loads: Determine if the application involves dynamic loads, shocks, or vibrations. Select a coupling that can handle such dynamic forces without premature failure.
  • Torsional Stiffness: Consider the required torsional stiffness of the coupling based on the application’s precision and response characteristics. A stiffer coupling may be needed for highly precise systems.
  • Material Selection: Choose appropriate materials for the coupling components based on the operating conditions, chemical compatibility, and desired mechanical properties.
  • Installation and Maintenance: Ensure that the coupling design allows for easy installation and maintenance. Consider features such as split couplings, easy access to bolts, and lubrication points.
  • Alignment Requirements: Evaluate the alignment requirements of the coupling. Some couplings may need precise alignment, while others can tolerate moderate misalignment.
  • Cost and Life-Cycle Considerations: Weigh the initial cost of the coupling against its expected lifespan and maintenance requirements. Choose a coupling that provides a balance between performance and cost-effectiveness over its life cycle.

By carefully considering these factors during the design process, engineers can create industrial couplings that are tailored to the specific requirements of the application. Properly designed couplings will enhance the performance, efficiency, and reliability of power transmission systems, ultimately contributing to the overall success of the machinery or equipment they are used in.

Industrial coupling

Materials Used in Manufacturing Industrial Couplings and Their Impact on Performance

Industrial couplings are manufactured using a variety of materials, each chosen based on its specific properties and the intended application. The choice of material significantly impacts the performance and reliability of the coupling. Here are some commonly used materials and their impact on performance:

  • Steel: Steel is a widely used material in manufacturing industrial couplings due to its excellent strength, durability, and resistance to wear and corrosion. Steel couplings are suitable for heavy-duty applications where high torque transmission is required. They are often used in demanding industries such as steel production, mining, and power generation. Steel couplings provide robust performance and are capable of handling harsh operating conditions.
  • Cast Iron: Cast iron is another common material for industrial couplings, known for its good mechanical properties and cost-effectiveness. Cast iron couplings are used in various applications, including pumps, compressors, and general machinery. While not as strong as steel, cast iron couplings can still handle substantial torque loads and provide reliable performance in medium-duty applications.
  • Stainless Steel: Stainless steel couplings offer excellent corrosion resistance, making them suitable for applications where exposure to moisture, chemicals, or corrosive environments is a concern. Industries such as food processing, pharmaceuticals, and marine often use stainless steel couplings to ensure hygiene, cleanliness, and durability. They are also used in applications where high torsional rigidity and precise alignment are required.
  • Aluminum: Aluminum couplings are favored for their lightweight properties and high thermal conductivity. They are commonly used in applications where weight reduction is critical, such as aerospace and automotive industries. However, aluminum has lower strength compared to steel or stainless steel, so aluminum couplings are typically used in low to medium torque applications.
  • Elastomers: Elastomeric materials, such as rubber or polyurethane, are used in flexible couplings to provide damping and vibration isolation. Elastomeric couplings can handle misalignment and shock loads while reducing noise and vibration in machinery. They are widely used in applications like pumps, compressors, and conveyor systems to protect both the machinery and surrounding structures from excessive vibrations.
  • Composite Materials: Composite materials, which are a combination of different materials, can offer unique advantages in specific applications. For example, fiber-reinforced composites provide a balance between strength and weight, making them suitable for lightweight couplings used in aerospace and high-performance applications.

Choosing the appropriate material for an industrial coupling depends on factors such as the required torque capacity, operating environment, temperature range, and desired service life. In some cases, couplings may be coated or treated to enhance their performance, such as adding surface treatments for improved wear resistance or anti-corrosion properties.

In summary, the selection of materials in manufacturing industrial couplings is critical to ensuring optimal performance and reliability in a wide range of industrial applications. Each material offers specific advantages, and the choice depends on the specific needs of the application and the operating conditions in which the coupling will be used.

Industrial coupling

How do Rigid Couplings Differ from Flexible Couplings in Industrial Applications?

In industrial applications, rigid couplings and flexible couplings serve different purposes and have distinct characteristics that make them suitable for various scenarios. Here’s a detailed comparison of rigid couplings and flexible couplings:

Rigid Couplings:

  • Design: Rigid couplings are solid, one-piece couplings that do not have any flexible elements. They are typically made from materials like steel, aluminum, or other rigid materials.
  • Torque Transmission: Rigid couplings provide a direct and efficient torque transmission between the connected shafts. There is little to no torsional flexibility, resulting in a more rigid connection.
  • Misalignment Compensation: Rigid couplings are not designed to accommodate misalignments between the shafts. Proper alignment during installation is crucial to avoid issues like increased wear, vibrations, and premature failures.
  • Applications: Rigid couplings are commonly used in applications where precise alignment is feasible, and misalignments are minimal or controlled. They are often found in machines that require high-precision positioning and where torsional rigidity is critical.
  • Advantages: Rigid couplings offer high torque capacity, precise shaft alignment, and superior torsional stiffness. They are also straightforward to install and require minimal maintenance.
  • Disadvantages: The lack of flexibility makes rigid couplings unsuitable for applications with misalignments or situations where shock absorption is necessary. They may also transmit vibrations and shocks to connected machinery, leading to increased stress and potential failures.

Flexible Couplings:

  • Design: Flexible couplings have elements or features that provide some degree of flexibility, allowing them to compensate for misalignments and absorb shocks and vibrations.
  • Torque Transmission: Flexible couplings transmit torque while allowing for slight angular and axial misalignments between the shafts. They can dampen vibrations and reduce shocks, protecting the connected machinery.
  • Misalignment Compensation: Flexible couplings are specifically designed to accommodate misalignments, including angular, axial, and parallel misalignments. They can help prevent premature wear and failures caused by misalignment.
  • Applications: Flexible couplings are used in a wide range of industrial applications where misalignments are common or expected. They are suitable for machinery with dynamic loads, varying operating conditions, and potential shaft movements.
  • Advantages: Flexible couplings offer misalignment compensation, vibration dampening, and shock absorption properties. They can improve the overall reliability and lifespan of machinery by reducing stress and wear on components.
  • Disadvantages: Flexible couplings may introduce a certain amount of backlash, which can be a concern in precision applications. Some types of flexible couplings have lower torque capacities compared to rigid couplings.

In summary, the choice between rigid couplings and flexible couplings depends on the specific requirements of the industrial application. Rigid couplings are ideal for applications with precise alignment and high torsional rigidity, while flexible couplings excel in scenarios with misalignments, vibrations, and shock forces. Engineers carefully consider the operating conditions, torque requirements, and misalignment factors to select the most appropriate coupling type, ensuring reliable and efficient power transmission in their industrial setups.

China best Flexible Shalft Coupling for Excavator Industrial Machine Servo Motor Coupling  China best Flexible Shalft Coupling for Excavator Industrial Machine Servo Motor Coupling
editor by CX 2024-03-04