China Best Sales CHINAMFG Ngclz Type Manufacture Machinery Industrial Drum Gear Coupling with Brake Wheel

Product Description

  NGCLZ Type Drum Gear Coupling(JB/ZQ 4645-1997)

Product Description

 

♦Description  
Features:
Gear couplings are used to provide a mechanical connection between the rotating shafts of mechanical equipment, solving inherent misalignment problems while transmitting power and torque between the connected shafts.
To increase coupling life, the shafts should be aligned to minimize deflection of the bending elements. Mounting requires shaft alignment in axial, parallel, and angular directions, each of which must not exceed the recommended mounting limits.
Drum gear coupling has the characteristics of a small outer diameter and is lightweight and can meet high-speed operation at the same time. For applications with limited space, this alternative can be selected.
 

Characteristics & Applications:
1. With a small amount of axial offset compensation performance, can not buffer and damping.

2. Small size, high transmission torque theoretically, need to be lubricated and sealed, but large noise and expensive price, used for the connection level of 2 coaxial shaft drive.

3. For connecting 2 coaxial axes under low-speed and heavy load conditions, such as metallurgical machinery and heavy-duty machinery, etc.

4. Does not apply to high-speed and high-precision shaft drive, starting frequently, and reversing the changing conditions should not be used.

5. Supporting with brake, used for metallurgical machinery and heavy machinery which need the brake parts.

A type is applicable to NGCLZ 1-13. B type is applicable to NGCLZ 14.

♦Main Dimension and Parameter

Note:
N.m= Nominal torque; rpm= Allowable speed of rotation; d1.d2= Diameter of shaft hole;
Y L= Length of shaft hole; mL= Amount of grease; kg.m²= Rotational inertia

1. The axle hole combination of the coupling has Z1/J1, Y/Y, J1/J1,Y/J1.
2. B2 is the size required to replace the seal.
3. The diameter of the shaft hole with brackets shall not be selected in the new design.

 

Other products

 

♦Other Products List

Transmission Machinery 
Parts Name
Model
Universal Coupling WS,WSD,WSP
Cardan Shaft SWC,SWP,SWZ
Tooth Coupling CL,CLZ,GCLD,GIICL,
GICL,NGCL,GGCL,GCLK
Disc Coupling JMI,JMIJ,JMII,JMIIJ
High Flexible Coupling LM
Chain Coupling GL
Jaw Coupling LT
Grid Coupling JS

 

 

Company Profile

 

 

  ♦Our Company

HangZhou CHINAMFG Machinery Manufacturing Co., Ltd. is a high-tech enterprise specializing in the design and manufacture of various types of coupling. There are 26 employees in our company, including 2 senior engineers and no fewer than 20 mechanical design and manufacture, heat treatment, welding, and other professionals.

Advanced and reasonable process, complete detection means. Our company actively introduces foreign advanced technology and equipment, on the basis of the condition, we make full use of the advantage and do more research and innovation. Strict to high quality and operate strictly in accordance with the ISO9000 quality certification system standard mode.

Our company supplies different kinds of products. High quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective. 

Our service

 

♦Our Services
1. Design Services
Our design team has experience in Cardan shafts relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

2. Product Services
Raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→ Packing→ Shipping

3. Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.

4. Research & Development
We usually research the new needs of the market and develop the new model when there is new cars in the market.

5. Quality Control
Every step should be a special test by Professional Staff according to the standard of ISO9001 and TS16949.
 

FAQ

 

♦FAQ
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2: Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3: How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: Do you provide samples? Is it free or extra?
Yes, we could offer the sample but not for free. Actually, we have a very good price principle, when you make the bulk order the cost of the sample will be deducted.

Q 5: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 6: What is the MOQ?
A: Usually our MOQ is 1 pcs.

Q 7: Do you have inspection procedures for coupling?
A: 100% self-inspection before packing.

Q 8: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.

Q 9: What’s your payment?
A: T/T.  
 

♦Contact Us

Web: huadingcoupling
Add: No.11 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Industrial coupling

Signs of Wear and Failure in Industrial Couplings, and How to Address Them

Industrial couplings can experience wear and failure over time due to various factors such as misalignment, overloading, fatigue, and lack of maintenance. Recognizing the signs of wear and addressing them promptly is essential to prevent further damage and ensure the safe and efficient operation of machinery. Here are some common signs of wear and failure in industrial couplings and how to address them:

  • Excessive Vibrations: Excessive vibrations during operation can indicate misalignment, worn-out flexible elements, or coupling imbalance. Address the root cause of the vibrations by performing alignment checks, inspecting flexible elements, and balancing the coupling if necessary.
  • Abnormal Noise: Unusual noises such as clanking, rattling, or grinding sounds may indicate coupling wear or damage. Investigate the source of the noise and inspect the coupling for signs of wear, misalignment, or damaged components. Replace worn or damaged parts as needed.
  • High Operating Temperature: An increase in the operating temperature of the coupling could be a sign of excessive friction or inadequate lubrication. Check the coupling’s lubrication level and verify that it is suitable for the operating conditions. Inspect for any signs of rubbing or binding that may generate additional heat.
  • Visible Cracks or Damage: Perform regular visual inspections of the coupling for any visible cracks, corrosion, or other damage. If any issues are found, discontinue using the coupling immediately and replace it with a new one to prevent potential catastrophic failure.
  • Irregular Shaft Movement: If the shafts connected by the coupling exhibit irregular movement or wobbling during operation, it may indicate coupling wear or misalignment. Conduct alignment checks and inspect the coupling for signs of wear or deformation.
  • Loose or Missing Bolts: Loose or missing bolts in the coupling assembly can lead to misalignment and reduced performance. Regularly check and tighten the coupling bolts to the manufacturer’s recommended torque specifications.
  • Excessive Backlash: Backlash is the amount of play between the coupling components, which can result from wear or damage to the coupling’s flexible elements. Excessive backlash can affect precision applications. Replace the worn flexible elements or consider upgrading to a coupling with lower backlash.
  • Reduced Torque Transmission: A decrease in torque transmission can be an indication of coupling wear or damage. Check for signs of wear on the coupling’s contact surfaces and inspect the flexible elements for deformation or deterioration.
  • Unusual Coupling Movement: If the coupling exhibits abnormal movements, such as axial movement or coupling slippage, investigate the cause and address any misalignment or insufficient clamping force in the coupling assembly.
  • Frequent Coupling Failures: If the coupling experiences frequent failures, it may indicate improper selection or inadequate maintenance practices. Reevaluate the coupling’s suitability for the application and implement a more rigorous maintenance schedule.

When addressing signs of wear and failure in industrial couplings, it is essential to follow the manufacturer’s guidelines and consult with experienced technicians or engineers if needed. Regular maintenance, timely replacement of worn components, and proper alignment of the coupling can significantly extend its service life and ensure reliable performance in power transmission systems.

Industrial coupling

Comparison of Elastomeric Couplings to Metal Couplings in Different Industrial Scenarios

Elastomeric couplings and metal couplings are two common types of couplings used in various industrial scenarios. Each type has its strengths and weaknesses, making them suitable for different applications based on specific requirements. Let’s compare elastomeric couplings to metal couplings in various industrial scenarios:

  • Vibration Damping and Misalignment: Elastomeric couplings excel in vibration damping and misalignment compensation. The flexible elastomeric elements of these couplings can absorb and dissipate vibrations, reducing the impact on connected equipment and bearings. They also accommodate angular and parallel misalignments, allowing for smoother operation even in situations where shafts are not perfectly aligned. Metal couplings, especially rigid ones, have limited ability to dampen vibrations and may require precise alignment for optimal performance.
  • Torsional Flexibility: Elastomeric couplings offer torsional flexibility, which makes them suitable for applications with shock loads and torque spikes. The elastomeric material acts as a cushion, absorbing sudden shocks and protecting the machinery. Metal couplings, particularly rigid ones, are stiffer and transmit more torsional rigidity, which might not be desirable in scenarios where torsional flexibility is necessary to protect sensitive equipment.
  • Corrosive Environments: In corrosive environments, metal couplings made of corrosion-resistant materials, such as stainless steel or specialized alloys, are preferred. They can withstand the effects of chemicals and aggressive substances without degradation. Elastomeric couplings may not be suitable for such environments as the elastomeric materials are generally not as resistant to chemical attack as metals.
  • Temperature Extremes: Elastomeric couplings have temperature limitations, and their performance might degrade at very high or low temperatures. In contrast, metal couplings can be designed with materials that offer higher temperature resistance. High-temperature metal couplings are suitable for industries like steel and glass manufacturing, where elevated temperatures are common.
  • High Torque Applications: For high-torque applications, metal couplings, especially disc or gear couplings, are preferred due to their higher torque capacity and ability to transmit large amounts of power. Elastomeric couplings may have limitations in high-torque scenarios and are more commonly used in medium to low torque applications.
  • Cost and Maintenance: Elastomeric couplings are generally more cost-effective than metal couplings. They have a simpler design and are easier to manufacture. Additionally, elastomeric couplings require less maintenance since they have fewer moving parts and do not need lubrication. On the other hand, metal couplings, especially certain types like gear couplings, may require periodic lubrication and more intricate maintenance procedures.

In summary, the choice between elastomeric couplings and metal couplings depends on the specific requirements of the industrial scenario. Elastomeric couplings are favored in applications where vibration damping, misalignment compensation, and torsional flexibility are essential. They are also cost-effective and require less maintenance. On the other hand, metal couplings are preferred in high-torque applications, corrosive environments, and temperature extremes. They offer higher temperature resistance and torque capacity but may be more complex and require more maintenance.

Industrial coupling

Primary Functions of Industrial Couplings in Power Transmission Systems

Industrial couplings play a crucial role in power transmission systems, enabling the efficient transfer of torque between rotating shafts. These couplings serve several primary functions that are essential for the smooth and reliable operation of machinery and equipment. Here are the key functions of industrial couplings:

  • Torque Transmission: One of the primary functions of industrial couplings is to transmit torque from one shaft to another. When connected, the coupling allows the torque generated by the driving shaft to be transferred to the driven shaft, facilitating rotational motion in the machinery.
  • Misalignment Compensation: Industrial couplings are designed to accommodate misalignments between connected shafts. Misalignments can occur due to various factors such as manufacturing tolerances, thermal expansion, and operational loads. Flexible couplings, such as diaphragm couplings and elastomeric couplings, can handle misalignments and prevent excessive stress and wear on the machinery caused by misaligned shafts.
  • Vibration Dampening: Vibrations generated during operation can cause wear and fatigue on machinery components. Industrial couplings, especially flexible couplings, have the ability to dampen vibrations and prevent them from propagating through the entire system. By reducing vibrations, the couplings contribute to a quieter and more stable operation.
  • Shock Absorption: In applications where sudden load changes or impacts can occur, industrial couplings with shock-absorbing capabilities are essential. Grid couplings and elastomeric couplings are examples of couplings that can absorb and cushion shocks, protecting the machinery from damage and improving its longevity.
  • Torsional Flexibility: Industrial couplings provide torsional flexibility, allowing for slight angular displacement between the shafts. This flexibility is vital in systems where there are variations in the angular position of the shafts or where torsional vibrations need to be minimized.
  • Compensation for Thermal Expansion: During operation, machinery components can experience temperature variations, leading to thermal expansion or contraction. Industrial couplings can compensate for the resulting changes in shaft length, ensuring the system maintains proper alignment and performance even under fluctuating temperature conditions.
  • Connecting Disparate Components: In complex industrial setups, couplings are used to connect disparate components, such as motors, gearboxes, and pumps, allowing them to work together as an integrated system. The coupling acts as a mechanical bridge, enabling the transmission of power between the various components.

Overall, industrial couplings are critical components in power transmission systems, enhancing the performance, reliability, and longevity of machinery and equipment. Their ability to handle misalignments, dampen vibrations, absorb shocks, and provide torsional flexibility ensures that power is transmitted smoothly and efficiently, ultimately contributing to the seamless operation of industrial processes and applications.

China Best Sales CHINAMFG Ngclz Type Manufacture Machinery Industrial Drum Gear Coupling with Brake Wheel  China Best Sales CHINAMFG Ngclz Type Manufacture Machinery Industrial Drum Gear Coupling with Brake Wheel
editor by CX 2024-03-28