China Custom Wd Type Heavy-Duty Cross Shaft Universal Coupling for Industrial Vehicle and Rig

Product Description

Product Description

 

 

Product Parameters

 

product Wd Type Cross Shaft Universal Coupling for Industrial Vehicle
material stainless steel , iron , aluminum ,bronze ,carbon steel ,brass etc .
size ISO standard  ,customer requirements
kind expansion sleeve Z1/Z2/Z3/Z4/Z5/Z6/Z7/Z8/Z9/Z10/Z11/Z12/Z13/Z14/Z18/Z19
BORE Finished bore, Pilot Bore, Special request
surface treatment Carburizing and Quenching,Tempering ,Tooth suface high quenching Hardening,Tempering
Processing Method Molding, Shaving, Hobbing, Drilling, Tapping, Reaming, Manual Chamfering, Grinding etc
Heat Treatment Quenching & Tempering, Carburizing & Quenching, High-frequency Hardening, Carbonitriding……
Package Wooden Case/Container and pallet, or made-to-order
Certificate ISO9001 ,SGS
Machining Process Gear Hobbing, Gear Milling, Gear Shaping, Gear Broaching, Gear Shaving, Gear Grinding and Gear Lapping
Applications Toy, Automotive, instrument, electrical equipment, household appliances, furniture, mechanical equipment,daily living equipment, electronic sports equipment, , sanitation machinery, market/ hotel equipment supplies, etc.
Testing Equipment Rockwell hardness tester 500RA, Double mesh instrument HD-200B & 3102,Gear measurement center instrument CNC3906T and other High precision detection equipments

workshop & equipment

 

 

 

 

Production process

 

Certifications

 

 

Our Advantages

 

1  . Prioritized Quality          
2  .Integrity-based Management
3  .Service Orientation
4  .150+  advanced equipment
5  .10000+  square meter  factory area
6  .200+ outstanding employees  
7  .90% employees have more than 10 year- working   experience in our factory
8  .36 technical staff
9  .certificate  ISO 9001 , SGS

10  . Customization support

11 .Excellent after-sales service

 

 

shipping

 

 

sample orders delivery time:
10-15 working days  as usual
15-20 working days  in busy season

large order leading time :
20-30 working days as usual
30-40 working days  in busy season

 

FAQ

1. why should you buy products from us not from other suppliers?
We are a 32 year-experience manufacturer on making the gear, specializing in manufacturing varieties of gears, such as helical gear ,bevel gear ,spur gear and grinding gear, gear shaft, timing pulley, rack, , timing pulley and other transmission parts . There are 150+ advanced equipment ,200+ excellent employees ,and 36 technical staff . what’s more ,we have got ISO9001 and SGS certificate .
2 .Do you accept small order?
If your order bearings are our standard size, we accept even 1pcs.

3 .How long is the delivery?
A: Small orders usually takes 10-15 working days,big order usually 20-35 days, depending on orders quantity and whether are standard size.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Industrial coupling

Are there any Safety Considerations or Guidelines Related to the Installation of Industrial Couplings?

Yes, the installation of industrial couplings requires careful attention to safety considerations and adherence to specific guidelines to ensure the coupling functions correctly and safely. Improper installation can lead to coupling failures, equipment damage, and potential hazards for personnel. Here are some essential safety considerations and guidelines related to the installation of industrial couplings:

  • Follow Manufacturer Instructions: Always follow the manufacturer’s installation instructions and guidelines provided with the coupling. Manufacturers have specific recommendations for proper installation, which may vary depending on the coupling type and model.
  • Use Proper Tools and Equipment: Use the appropriate tools and equipment for the installation process. Ensure that torque wrenches and other tools are properly calibrated to achieve the correct bolt torque and avoid over-tightening or under-tightening.
  • Verify Shaft Alignment: Before installing the coupling, verify the alignment of the connected shafts. Proper shaft alignment is crucial to prevent premature wear, vibration, and misalignment-related issues during operation.
  • Ensure Clean Surfaces: Clean and inspect the shaft ends and coupling bore to remove any dirt, debris, or old lubricants. Clean surfaces ensure proper contact and reduce the risk of contamination inside the coupling.
  • Check Coupling Fit: Ensure that the coupling fits properly on the shafts and that there is sufficient clearance between the coupling and surrounding components. Avoid interference that could lead to mechanical binding during operation.
  • Verify Keyway and Key Fit: If the coupling uses a keyway and key for torque transmission, verify that the key fits securely and accurately in the keyway without any play or gaps.
  • Inspect Flexible Elements: For flexible couplings, inspect the flexible elements (e.g., elastomeric inserts or diaphragms) for any damage or defects before installation. Replace damaged elements with new ones as needed.
  • Tighten Bolts Gradually: When tightening coupling bolts, follow a gradual tightening sequence in a star or cross pattern to ensure even distribution of the load. This prevents uneven stress on the coupling and shafts.
  • Use Locking Devices: Consider using appropriate locking devices, such as split washers, locking nuts, or thread-locking compounds, to prevent bolts from loosening during operation.
  • Perform Post-Installation Checks: After installing the coupling, perform post-installation checks to verify proper alignment, bolt tightness, and overall coupling integrity before putting the machinery into full operation.

Following these safety considerations and guidelines is essential to ensure a safe and successful installation of industrial couplings. Regular maintenance and inspections throughout the coupling’s service life are also crucial for identifying potential issues early on and addressing them promptly to prevent accidents or damage to the machinery.

Industrial coupling

How do Couplings Contribute to the Overall Efficiency and Productivity of Industrial Processes?

Couplings play a crucial role in enhancing the overall efficiency and productivity of industrial processes by facilitating reliable power transmission and ensuring smooth operation of machinery. Their contributions can be summarized as follows:

  • Power Transmission: Couplings efficiently transfer mechanical power between connected shafts, allowing motors to drive various industrial equipment and processes. By maintaining a strong and dependable connection, couplings minimize power losses during transmission, ensuring that the maximum power generated by the motor is effectively utilized in the machinery.
  • Torsional Flexibility: Many couplings, such as elastomeric couplings and diaphragm couplings, offer torsional flexibility. This flexibility helps dampen vibrations and shocks generated during machinery operation, protecting both the machinery and the surrounding structures from undue stress. Reduced vibrations also lead to smoother operations, less wear on components, and improved precision in industrial processes.
  • Misalignment Compensation: Couplings can accommodate misalignment between connected shafts, whether it’s due to thermal expansion, manufacturing tolerances, or dynamic loads. This ability to compensate for misalignment reduces the need for precision shaft alignment during installation and ensures continuous power transmission even under changing operating conditions. Consequently, machinery downtime is reduced, and maintenance efforts are optimized.
  • Overload Protection: Certain couplings, such as torque-limiting couplings and overload couplings, provide protection against sudden torque spikes and overloads. These couplings disengage temporarily when the torque exceeds a preset limit, preventing damage to machinery components and protecting the entire system from catastrophic failures.
  • Reduction of Noise and Vibrations: Vibrations and noise can be detrimental to both the machinery and the work environment. By effectively dampening vibrations, couplings contribute to a quieter workplace and improve the overall comfort and safety for operators and personnel.
  • Flexible Design and Application: Industrial couplings come in various types and sizes, offering versatility in design and application. This flexibility allows engineers and designers to choose the most suitable coupling for specific industrial processes, optimizing performance and productivity. Whether it’s a high-speed application, a heavy-duty process, or an environment with challenging operating conditions, there is a coupling to meet the requirements.
  • Easy Maintenance: Couplings that are properly selected and installed require minimal maintenance. Many couplings are designed with features that facilitate easy access for inspections, lubrication, and replacement if needed. This ease of maintenance reduces downtime and ensures continuous operation of industrial processes.
  • Extended Machinery Lifespan: By reducing stress on machinery components, dampening vibrations, and offering protection against overload conditions, couplings contribute to extending the overall lifespan of industrial equipment. This leads to higher return on investment and cost savings in the long run.

In conclusion, industrial couplings are essential components that significantly contribute to the overall efficiency and productivity of industrial processes. By ensuring reliable power transmission, accommodating misalignment, providing overload protection, and dampening vibrations, couplings optimize machinery performance, reduce downtime, and enhance the overall industrial process efficiency.

Industrial coupling

Types of Industrial Couplings Used in Engineering Applications

Industrial couplings are used in various engineering applications to connect rotating shafts and transmit torque between them. Each type of industrial coupling offers unique features and advantages, making them suitable for specific applications. Here are the different types of industrial couplings commonly used in engineering applications:

  • 1. Diaphragm Couplings:
  • Diaphragm couplings use a flexible diaphragm made of metal to transmit torque between the shafts. They are known for their ability to accommodate misalignments, including axial, angular, and parallel misalignments. Diaphragm couplings are used in applications where precise alignment between shafts is challenging or when there are potential misalignment variations during operation. They are commonly found in pumps, compressors, turbines, and high-speed machinery.

  • 2. Gear Couplings:
  • Gear couplings transmit torque through gear teeth that mesh together. They are designed for high torque capacity and are known for their durability and rigid construction. Gear couplings can handle high torque and are used in heavy-duty applications, such as steel mills, mining equipment, and large pumps.

  • 3. Grid Couplings:
  • Grid couplings use a grid of spring-like elements made of metal to transmit torque. The grid flexes to accommodate misalignments and shock loads, making them suitable for applications with varying loads or where shock absorption is required. Grid couplings are commonly used in pumps, conveyors, and compressors.

  • 4. Jaw Couplings:
  • Jaw couplings use elastomeric elements to connect the shafts. They are known for their simplicity, ease of installation, and cost-effectiveness. Jaw couplings are suitable for small to medium-sized machinery, including pumps, fans, and small motors.

  • 5. Disc Couplings:
  • Disc couplings use thin metal discs to transmit torque between the shafts. They can handle misalignments and are often used in precision applications that require low backlash and high torsional stiffness. Disc couplings find applications in high-precision systems, such as machine tools and robotics.

  • 6. Oldham Couplings:
  • Oldham couplings consist of three parts: two hubs and a middle block. The middle block allows axial and angular misalignment while maintaining constant velocity between the shafts. They are used in applications where low torque transmission and misalignment compensation are required.

  • 7. Universal Joint Couplings:
  • Universal joint couplings are used to transmit torque between shafts at different angles. They are commonly used in automotive applications, such as drive shafts, as well as in industrial machinery with offset shafts.

Each type of industrial coupling has its own advantages and limitations, and the selection of the appropriate coupling depends on factors like torque requirements, misalignment conditions, operating environment, and the specific demands of the application. Engineers carefully consider these factors to choose the most suitable coupling for the particular engineering application, ensuring efficient and reliable power transmission while protecting the connected machinery from excessive stress and wear.

China Custom Wd Type Heavy-Duty Cross Shaft Universal Coupling for Industrial Vehicle and Rig  China Custom Wd Type Heavy-Duty Cross Shaft Universal Coupling for Industrial Vehicle and Rig
editor by CX 2024-02-27