China factory SWC490A-3550 Industrial Cardan Joint Shaft Universal Coupling for Rolling Wire Line

Product Description

SWC490A-3550 Industrial Cardan Joint Shaft Universal Coupling For Rolling Wire Line

Brief Introduction

Why choose us!

                                                                                                                                                     
Quality Control                                                                                                                                                                                                

       
      

 

Product Description

structure universal Flexible or Rigid Rigid Standard or Nonstandard Nonstandard
Material Alloy steel Brand name HangZhou XIHU (WEST LAKE) DIS. Place of origin ZheJiang ,China
Model SWC490A-3550 Raw materials heat treatment Length 3550mm
Flange DIA 490mm Nominal torque 700KN.m coating heavy duty industrial paint
Paint clour customization Application rolling wire machine OEM/ODM Available
Certification ISO,TUV,SGS Price calculate according to model Custom service Available

Packaging & Delivery

Packaging details:Standard plywood case

Delivery detail: 15 -20 working days,depend on the actual produce condition

 

FAQ

Q1: What is the location of your company?

A1: Our company is located in the HangZhou City ,ZheJiang ,China.Welcome to visit our factory at anytime!

 

Q2: How does your factory do regarding quality control?

A2: Our standard QC system to control quality.

 

Q3: What is your delivery time?

A3: Usually within 25 days after the receipt of payment.Delivery time must depend on the actual produce condition.

 

Q4: What are your strengths?

A4: 1.We are the manufacturer,having competitive advantage in price.

 

2.A large part of money is put into advancing CNC equipments and product

R&D department annual,the performance of cardan shaft can be guaranteed.

 

3.About quality issues or follow-up after-sales service,we report directly to the boss.

 

4.We have the ambitions to exploring and developing the world’s cardan shaft market and

we believe we can.
 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Industrial coupling

Real-World Examples of Successful Industrial Coupling Applications

Industrial couplings are essential components in various machinery and equipment across different industries. Their versatility, reliability, and ability to handle diverse operating conditions have led to numerous successful applications. Here are some real-world examples of successful industrial coupling applications:

  • Pumps and Compressors: In the oil and gas industry, centrifugal pumps and compressors are used for fluid transportation and compression. Gear couplings are commonly employed in these applications due to their high torque capacity and ability to handle misalignment caused by thermal expansion. They ensure reliable power transmission and efficient operation of critical equipment in harsh environments.
  • Steel Industry: The steel manufacturing process involves heavy machinery subjected to high torque and intermittent loads. Grid couplings are extensively used in steel rolling mills to connect the motors and rolling stands. Their torsional flexibility helps dampen shocks and vibrations during the rolling process, ensuring precision and reducing wear on the equipment.
  • Pulp and Paper Processing: In the pulp and paper industry, large rotary drums and rolls require smooth and reliable power transmission. Disc couplings are commonly used in these applications due to their ability to handle misalignment and high speeds. They ensure precise control during paper manufacturing processes, resulting in consistent product quality.
  • Power Generation: Power plants rely on large turbines, generators, and compressors that require efficient power transmission. Diaphragm couplings are well-suited for such high-power applications due to their torsional stiffness and ability to handle misalignment. They provide smooth torque transmission and help maintain precise alignment, enhancing the overall efficiency of power generation systems.
  • Automotive Industry: The automotive industry utilizes various types of couplings for different applications. Universal joints are commonly used in drive shafts, enabling power transmission between the engine and wheels while allowing for movement due to suspension and steering. Additionally, elastomeric couplings are employed in engine-driven accessories, such as water pumps and power steering systems, to reduce vibrations and noise.
  • Marine Propulsion: In marine applications, where space and weight are critical considerations, flexible couplings play a vital role in connecting the engine to the propeller shaft. These couplings accommodate misalignment caused by hull deflection and vibration, ensuring smooth and efficient propulsion while reducing stress on the drivetrain.
  • Mining Equipment: Mining operations involve heavy-duty machinery operating in challenging conditions. Fluid couplings are commonly used in conveyors, crushers, and draglines to start and control the speed of large motors while providing overload protection. These couplings protect the machinery from excessive starting torque and shock loads, enhancing their longevity and reducing downtime.

These examples illustrate the widespread use and success of industrial couplings across diverse industries. The careful selection of the appropriate coupling type for each application ensures reliable power transmission, reduced downtime, and improved overall system performance.

Industrial coupling

How do Couplings Contribute to the Overall Efficiency and Productivity of Industrial Processes?

Couplings play a crucial role in enhancing the overall efficiency and productivity of industrial processes by facilitating reliable power transmission and ensuring smooth operation of machinery. Their contributions can be summarized as follows:

  • Power Transmission: Couplings efficiently transfer mechanical power between connected shafts, allowing motors to drive various industrial equipment and processes. By maintaining a strong and dependable connection, couplings minimize power losses during transmission, ensuring that the maximum power generated by the motor is effectively utilized in the machinery.
  • Torsional Flexibility: Many couplings, such as elastomeric couplings and diaphragm couplings, offer torsional flexibility. This flexibility helps dampen vibrations and shocks generated during machinery operation, protecting both the machinery and the surrounding structures from undue stress. Reduced vibrations also lead to smoother operations, less wear on components, and improved precision in industrial processes.
  • Misalignment Compensation: Couplings can accommodate misalignment between connected shafts, whether it’s due to thermal expansion, manufacturing tolerances, or dynamic loads. This ability to compensate for misalignment reduces the need for precision shaft alignment during installation and ensures continuous power transmission even under changing operating conditions. Consequently, machinery downtime is reduced, and maintenance efforts are optimized.
  • Overload Protection: Certain couplings, such as torque-limiting couplings and overload couplings, provide protection against sudden torque spikes and overloads. These couplings disengage temporarily when the torque exceeds a preset limit, preventing damage to machinery components and protecting the entire system from catastrophic failures.
  • Reduction of Noise and Vibrations: Vibrations and noise can be detrimental to both the machinery and the work environment. By effectively dampening vibrations, couplings contribute to a quieter workplace and improve the overall comfort and safety for operators and personnel.
  • Flexible Design and Application: Industrial couplings come in various types and sizes, offering versatility in design and application. This flexibility allows engineers and designers to choose the most suitable coupling for specific industrial processes, optimizing performance and productivity. Whether it’s a high-speed application, a heavy-duty process, or an environment with challenging operating conditions, there is a coupling to meet the requirements.
  • Easy Maintenance: Couplings that are properly selected and installed require minimal maintenance. Many couplings are designed with features that facilitate easy access for inspections, lubrication, and replacement if needed. This ease of maintenance reduces downtime and ensures continuous operation of industrial processes.
  • Extended Machinery Lifespan: By reducing stress on machinery components, dampening vibrations, and offering protection against overload conditions, couplings contribute to extending the overall lifespan of industrial equipment. This leads to higher return on investment and cost savings in the long run.

In conclusion, industrial couplings are essential components that significantly contribute to the overall efficiency and productivity of industrial processes. By ensuring reliable power transmission, accommodating misalignment, providing overload protection, and dampening vibrations, couplings optimize machinery performance, reduce downtime, and enhance the overall industrial process efficiency.

Industrial coupling

Primary Functions of Industrial Couplings in Power Transmission Systems

Industrial couplings play a crucial role in power transmission systems, enabling the efficient transfer of torque between rotating shafts. These couplings serve several primary functions that are essential for the smooth and reliable operation of machinery and equipment. Here are the key functions of industrial couplings:

  • Torque Transmission: One of the primary functions of industrial couplings is to transmit torque from one shaft to another. When connected, the coupling allows the torque generated by the driving shaft to be transferred to the driven shaft, facilitating rotational motion in the machinery.
  • Misalignment Compensation: Industrial couplings are designed to accommodate misalignments between connected shafts. Misalignments can occur due to various factors such as manufacturing tolerances, thermal expansion, and operational loads. Flexible couplings, such as diaphragm couplings and elastomeric couplings, can handle misalignments and prevent excessive stress and wear on the machinery caused by misaligned shafts.
  • Vibration Dampening: Vibrations generated during operation can cause wear and fatigue on machinery components. Industrial couplings, especially flexible couplings, have the ability to dampen vibrations and prevent them from propagating through the entire system. By reducing vibrations, the couplings contribute to a quieter and more stable operation.
  • Shock Absorption: In applications where sudden load changes or impacts can occur, industrial couplings with shock-absorbing capabilities are essential. Grid couplings and elastomeric couplings are examples of couplings that can absorb and cushion shocks, protecting the machinery from damage and improving its longevity.
  • Torsional Flexibility: Industrial couplings provide torsional flexibility, allowing for slight angular displacement between the shafts. This flexibility is vital in systems where there are variations in the angular position of the shafts or where torsional vibrations need to be minimized.
  • Compensation for Thermal Expansion: During operation, machinery components can experience temperature variations, leading to thermal expansion or contraction. Industrial couplings can compensate for the resulting changes in shaft length, ensuring the system maintains proper alignment and performance even under fluctuating temperature conditions.
  • Connecting Disparate Components: In complex industrial setups, couplings are used to connect disparate components, such as motors, gearboxes, and pumps, allowing them to work together as an integrated system. The coupling acts as a mechanical bridge, enabling the transmission of power between the various components.

Overall, industrial couplings are critical components in power transmission systems, enhancing the performance, reliability, and longevity of machinery and equipment. Their ability to handle misalignments, dampen vibrations, absorb shocks, and provide torsional flexibility ensures that power is transmitted smoothly and efficiently, ultimately contributing to the seamless operation of industrial processes and applications.

China factory SWC490A-3550 Industrial Cardan Joint Shaft Universal Coupling for Rolling Wire Line  China factory SWC490A-3550 Industrial Cardan Joint Shaft Universal Coupling for Rolling Wire Line
editor by CX 2024-03-14