China Hot selling Industrial Flexible High Pressure Steel Wire Hydraulic Rubber Fuel Oil Hose Fitting Couplings Factory

Product Description

                                                    Rubber Smooth Cover Fuel Oil Hose

Tube: black NITRIL rubber tube, oil and fuel resistant, smooth
Reinforcement: textile braided high tensile synthetic yarn
Cover: black smooth NEOPRENE rubber, oil, ozone, weather, abrasion resistant
Applications: in fuel systems like gasoline, diesel fuel, also suitable for loading and unloading tank cars, automobiles, oil refine and oil related industrial, etc.
Temperature: -40°C + 100°C
Length: 40, 50, 100M
Packing: transparent P.V.C. film or Weaving bags

ID (mm) ID (inch) Wall (mm) WP (bar) BP (bar) Radius (mm) Weight (kg/m)
6 1/4 3.5 20 60 23 0.18
8 5/16 3.5 20 60 28 0.21
10 3/8 3.5 20 60 35 0.27
13 1/2 4 20 60 58 0.41
16 5/8 4.5 20 60 78 0.5
19 3/4 4.75 20 60 105 0.68
25 1 5.5 20 60 130 0.92

HYROTECH Strength:
 

1.Competitive Prices
 

2.Only produce high quality products
 

3.Raw Material quality strictly checked before production
 

4.Various tests before shipping to make sure stable quality
 

5.Very fast delivery time


 

HangZhou CHINAMFG Rubber & Plastic Products Co., Ltd

 

Company Introduction:

HYROTECH is a leading manufacturer of various rubber hoses & related accessories in China for more than 10 years.

Our products have been sold to more than 60 countries, including USA,Brazil, Colombia, Chile, Argentina, Peru, Russia, Ukraine,Thailand, Spain,UAE, Saudi Arabia,Iran, etc. 

Factory Show

Our factory covers an area of 20000 square CHINAMFG workship with a total invest ment up to RMB 100 million.

We own 100 sets of different equipment for production, testing and employ more than 200 staffs, including 15 technicians.

Our Annul output is 10 million CHINAMFG for hydraulic hoses and 5 million  CHINAMFG for industrial hoses.

Contact us

We are waiting for you, please feel free to contact us. We will produce stable and high quality product for you

 

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Industrial coupling

Signs of Wear and Failure in Industrial Couplings, and How to Address Them

Industrial couplings can experience wear and failure over time due to various factors such as misalignment, overloading, fatigue, and lack of maintenance. Recognizing the signs of wear and addressing them promptly is essential to prevent further damage and ensure the safe and efficient operation of machinery. Here are some common signs of wear and failure in industrial couplings and how to address them:

  • Excessive Vibrations: Excessive vibrations during operation can indicate misalignment, worn-out flexible elements, or coupling imbalance. Address the root cause of the vibrations by performing alignment checks, inspecting flexible elements, and balancing the coupling if necessary.
  • Abnormal Noise: Unusual noises such as clanking, rattling, or grinding sounds may indicate coupling wear or damage. Investigate the source of the noise and inspect the coupling for signs of wear, misalignment, or damaged components. Replace worn or damaged parts as needed.
  • High Operating Temperature: An increase in the operating temperature of the coupling could be a sign of excessive friction or inadequate lubrication. Check the coupling’s lubrication level and verify that it is suitable for the operating conditions. Inspect for any signs of rubbing or binding that may generate additional heat.
  • Visible Cracks or Damage: Perform regular visual inspections of the coupling for any visible cracks, corrosion, or other damage. If any issues are found, discontinue using the coupling immediately and replace it with a new one to prevent potential catastrophic failure.
  • Irregular Shaft Movement: If the shafts connected by the coupling exhibit irregular movement or wobbling during operation, it may indicate coupling wear or misalignment. Conduct alignment checks and inspect the coupling for signs of wear or deformation.
  • Loose or Missing Bolts: Loose or missing bolts in the coupling assembly can lead to misalignment and reduced performance. Regularly check and tighten the coupling bolts to the manufacturer’s recommended torque specifications.
  • Excessive Backlash: Backlash is the amount of play between the coupling components, which can result from wear or damage to the coupling’s flexible elements. Excessive backlash can affect precision applications. Replace the worn flexible elements or consider upgrading to a coupling with lower backlash.
  • Reduced Torque Transmission: A decrease in torque transmission can be an indication of coupling wear or damage. Check for signs of wear on the coupling’s contact surfaces and inspect the flexible elements for deformation or deterioration.
  • Unusual Coupling Movement: If the coupling exhibits abnormal movements, such as axial movement or coupling slippage, investigate the cause and address any misalignment or insufficient clamping force in the coupling assembly.
  • Frequent Coupling Failures: If the coupling experiences frequent failures, it may indicate improper selection or inadequate maintenance practices. Reevaluate the coupling’s suitability for the application and implement a more rigorous maintenance schedule.

When addressing signs of wear and failure in industrial couplings, it is essential to follow the manufacturer’s guidelines and consult with experienced technicians or engineers if needed. Regular maintenance, timely replacement of worn components, and proper alignment of the coupling can significantly extend its service life and ensure reliable performance in power transmission systems.

Industrial coupling

Are there any Industry Standards or Regulations Governing the Use of Industrial Couplings?

Yes, there are industry standards and regulations that govern the use of industrial couplings to ensure their safety, performance, and reliability. These standards are developed and maintained by recognized organizations and governing bodies to establish best practices and requirements for the design, manufacturing, installation, and operation of couplings. Some of the prominent standards and regulations include:

  • American National Standards Institute (ANSI): ANSI provides standards for couplings in various industries, including ANSI B11.19 for safety requirements in mechanical power presses and ANSI B15.1 for couplings used in general machinery.
  • International Organization for Standardization (ISO): ISO publishes standards related to couplings, such as ISO 14691 for torsionally flexible couplings, ISO 10001 for industrial couplings used in general applications, and ISO 28927 for couplings used in hand-held power tools.
  • American Petroleum Institute (API): API issues standards for couplings used in the oil and gas industry, such as API 610 for centrifugal pumps and API 671 for special purpose couplings.
  • European Committee for Standardization (CEN): CEN develops European standards, including EN 14492-2 for safety requirements in cranes – power driven winches – part 2: load limiting devices and EN 15592 for torsionally flexible couplings.
  • Occupational Safety and Health Administration (OSHA): In the United States, OSHA sets guidelines for safe working conditions, and some of its regulations apply to couplings used in industrial machinery to protect workers from potential hazards.
  • Machine Directive (EU): The Machine Directive is a European Union regulation that establishes safety requirements for machinery, including couplings used in industrial equipment sold within the EU member states.

These standards and regulations cover various aspects of industrial couplings, including their materials, design, load capacity, torque ratings, and safety features. Compliance with these standards ensures that couplings are designed and manufactured to meet specific performance criteria and are safe for use in industrial applications.

Manufacturers and users of industrial couplings should be aware of the relevant standards and regulations applicable to their specific industries and regions. Adhering to these standards not only ensures regulatory compliance but also helps in maintaining a high level of quality and reliability in industrial processes, leading to increased safety and efficiency.

Industrial coupling

How do Rigid Couplings Differ from Flexible Couplings in Industrial Applications?

In industrial applications, rigid couplings and flexible couplings serve different purposes and have distinct characteristics that make them suitable for various scenarios. Here’s a detailed comparison of rigid couplings and flexible couplings:

Rigid Couplings:

  • Design: Rigid couplings are solid, one-piece couplings that do not have any flexible elements. They are typically made from materials like steel, aluminum, or other rigid materials.
  • Torque Transmission: Rigid couplings provide a direct and efficient torque transmission between the connected shafts. There is little to no torsional flexibility, resulting in a more rigid connection.
  • Misalignment Compensation: Rigid couplings are not designed to accommodate misalignments between the shafts. Proper alignment during installation is crucial to avoid issues like increased wear, vibrations, and premature failures.
  • Applications: Rigid couplings are commonly used in applications where precise alignment is feasible, and misalignments are minimal or controlled. They are often found in machines that require high-precision positioning and where torsional rigidity is critical.
  • Advantages: Rigid couplings offer high torque capacity, precise shaft alignment, and superior torsional stiffness. They are also straightforward to install and require minimal maintenance.
  • Disadvantages: The lack of flexibility makes rigid couplings unsuitable for applications with misalignments or situations where shock absorption is necessary. They may also transmit vibrations and shocks to connected machinery, leading to increased stress and potential failures.

Flexible Couplings:

  • Design: Flexible couplings have elements or features that provide some degree of flexibility, allowing them to compensate for misalignments and absorb shocks and vibrations.
  • Torque Transmission: Flexible couplings transmit torque while allowing for slight angular and axial misalignments between the shafts. They can dampen vibrations and reduce shocks, protecting the connected machinery.
  • Misalignment Compensation: Flexible couplings are specifically designed to accommodate misalignments, including angular, axial, and parallel misalignments. They can help prevent premature wear and failures caused by misalignment.
  • Applications: Flexible couplings are used in a wide range of industrial applications where misalignments are common or expected. They are suitable for machinery with dynamic loads, varying operating conditions, and potential shaft movements.
  • Advantages: Flexible couplings offer misalignment compensation, vibration dampening, and shock absorption properties. They can improve the overall reliability and lifespan of machinery by reducing stress and wear on components.
  • Disadvantages: Flexible couplings may introduce a certain amount of backlash, which can be a concern in precision applications. Some types of flexible couplings have lower torque capacities compared to rigid couplings.

In summary, the choice between rigid couplings and flexible couplings depends on the specific requirements of the industrial application. Rigid couplings are ideal for applications with precise alignment and high torsional rigidity, while flexible couplings excel in scenarios with misalignments, vibrations, and shock forces. Engineers carefully consider the operating conditions, torque requirements, and misalignment factors to select the most appropriate coupling type, ensuring reliable and efficient power transmission in their industrial setups.

China Hot selling Industrial Flexible High Pressure Steel Wire Hydraulic Rubber Fuel Oil Hose Fitting Couplings Factory  China Hot selling Industrial Flexible High Pressure Steel Wire Hydraulic Rubber Fuel Oil Hose Fitting Couplings Factory
editor by CX 2024-04-23