China factory Standard China Factory Industrial Chain Sprocket Shaft Coupling

Product Description

  

Company Profile

 

  HangZhou Xihu (West Lake) Dis. Mechanical Transmission Parts Co., Ltd. is a professional manufacturer of mechanical transmission parts, founded in 1987. Our company is committed to standard roller sprocket, single row and multi-row sprocket, non-standard sprocket, gear, rack, bevel gear, sprocket, shaft, gear shaft and other products. We have passed ISO 9001  .Xihu (West Lake) Dis.  company has a number of experienced engineers, involved in plHangZhou, testing, heat treatment, inspection, the use of strict and accurate testing methods. Our sprockets are widely used in agricultural machinery, stereoscopic garage, mining equipment, woodworking machinery, petroleum machinery and other industries. Implementation standards such as ANSI.BS, DIN.KANA, etc., can also be customized according to the drawing processing
   Our products have won wide praise and trust from customers for their excellent quality. HangZhou Xihu (West Lake) Dis. mechanical transmission Parts Co., Ltd. adhere to the quality of survival, innovation and development, customer first business philosophy, dedicated to domestic and foreign customers service. We warmly welcome you to negotiate business with us. 
 

Product Description

 

Standard or Nonstandard Standard   Application  Maqchinery 
Hardness Hardened Tooth Surface   Material C45
Specification Various Sprockets   Pitch(PCD) 12.7
Toothed Portion Shape Spur Gear   Roller(DR) 8.51
HS Code  84839000   Production Capacity  100000 Pcs/Year

 

Detailed Photos

Certifications

 

FAQ

1. Are you manufacturer or trade company ?
    We are a manufacturing factory founded in 1987 ,with trade team for international service.
2. What terms of payment you usually use ?
    T/T . 30%  deposit ,and 70% before finish production .Price :FOB ZheJiang .
3. Can you make products according to customer”s design ?
    Yes , we can make according to customer”s drawing and samples .OED and ODM are acceptable.
4.How long is your delivery time ?
   Genarally it is 5-15 days afte rthe deposit .It will take more days customized.
5. What do I need for offering a quote ?
   Please offer us 2D or 3d drawing (with material ,dimension,surface treatment and other technical  datas etc.), quantity ,or samples .
   Then we will quote the best price .
 
 
 

Industrial coupling

How does Misalignment Affect the Performance of Industrial Couplings, and How Can it be Corrected?

Misalignment is one of the most common issues affecting the performance of industrial couplings. When the connected shafts are not properly aligned, it can lead to various problems that can impact the efficiency, reliability, and lifespan of the coupling and the entire mechanical system. Here’s how misalignment affects coupling performance and the methods to correct it:

Effects of Misalignment:

  • Increased Stress: Misalignment creates additional stresses on the coupling and connected machinery. This can result in premature wear, fatigue, and potential failure of coupling components.
  • Vibration and Noise: Misalignment generates vibrations and noise during operation. Excessive vibrations can damage other system components, reduce precision, and lead to discomfort for operators and personnel.
  • Reduced Power Transmission: Misalignment reduces the effective torque transmission capacity of the coupling. As a result, the system may not achieve the desired level of performance or may experience frequent slip-offs.
  • Temperature Rise: Misalignment causes additional friction and heat generation in the coupling. This can lead to an increase in operating temperature, potentially compromising the lubrication and reducing the coupling’s life.
  • Uneven Wear: Misalignment causes uneven loading on coupling elements, resulting in uneven wear and potentially leading to the failure of certain parts.

Methods to Correct Misalignment:

  • Shaft Realignment: The most effective method to correct misalignment is to perform a shaft realignment. This involves adjusting the position of one or both shafts to ensure they are co-linear and concentric. Precision alignment tools such as laser alignment systems or dial indicators are commonly used for this purpose.
  • Flexible Couplings: For applications where misalignment is inevitable due to factors such as thermal expansion or dynamic loads, flexible couplings can be used. Flexible couplings, like diaphragm couplings or elastomeric couplings, can accommodate small misalignments and reduce the stress on the system.
  • Spacer Couplings: Spacer couplings can be used to create space between the shaft ends, allowing for adjustments and realignments without disassembling the entire coupling assembly.
  • Torque Limiting Couplings: Torque limiting couplings can protect the machinery from excessive torque during misalignment or shock loads. They disengage temporarily when the torque exceeds a predefined limit, preventing damage to the coupling and other components.
  • Periodic Maintenance: Regular maintenance and inspections should be performed to monitor the coupling’s alignment and address any changes or misalignments that may occur during operation.

Correcting misalignment is crucial for ensuring optimal performance and longevity of industrial couplings. Proper alignment minimizes stress, reduces wear, and enhances power transmission efficiency. Whether through precision alignment methods or using flexible couplings, addressing misalignment proactively can prevent costly repairs, downtime, and potential safety hazards in industrial systems.

Industrial coupling

Are there any Industry Standards or Regulations Governing the Use of Industrial Couplings?

Yes, there are industry standards and regulations that govern the use of industrial couplings to ensure their safety, performance, and reliability. These standards are developed and maintained by recognized organizations and governing bodies to establish best practices and requirements for the design, manufacturing, installation, and operation of couplings. Some of the prominent standards and regulations include:

  • American National Standards Institute (ANSI): ANSI provides standards for couplings in various industries, including ANSI B11.19 for safety requirements in mechanical power presses and ANSI B15.1 for couplings used in general machinery.
  • International Organization for Standardization (ISO): ISO publishes standards related to couplings, such as ISO 14691 for torsionally flexible couplings, ISO 10001 for industrial couplings used in general applications, and ISO 28927 for couplings used in hand-held power tools.
  • American Petroleum Institute (API): API issues standards for couplings used in the oil and gas industry, such as API 610 for centrifugal pumps and API 671 for special purpose couplings.
  • European Committee for Standardization (CEN): CEN develops European standards, including EN 14492-2 for safety requirements in cranes – power driven winches – part 2: load limiting devices and EN 15592 for torsionally flexible couplings.
  • Occupational Safety and Health Administration (OSHA): In the United States, OSHA sets guidelines for safe working conditions, and some of its regulations apply to couplings used in industrial machinery to protect workers from potential hazards.
  • Machine Directive (EU): The Machine Directive is a European Union regulation that establishes safety requirements for machinery, including couplings used in industrial equipment sold within the EU member states.

These standards and regulations cover various aspects of industrial couplings, including their materials, design, load capacity, torque ratings, and safety features. Compliance with these standards ensures that couplings are designed and manufactured to meet specific performance criteria and are safe for use in industrial applications.

Manufacturers and users of industrial couplings should be aware of the relevant standards and regulations applicable to their specific industries and regions. Adhering to these standards not only ensures regulatory compliance but also helps in maintaining a high level of quality and reliability in industrial processes, leading to increased safety and efficiency.

Industrial coupling

What is Industrial Coupling, and How Does It Work in Mechanical Systems?

In mechanical systems, an industrial coupling is a device used to connect two shafts together to transmit torque and motion from one shaft to the other. Couplings are essential components that enable the efficient transfer of power between rotating machinery while accommodating various operating conditions and misalignments. They play a crucial role in connecting motors, engines, gearboxes, and other equipment within industrial applications.

The primary function of an industrial coupling is to join two shafts in such a way that they can rotate together while allowing some degree of flexibility to accommodate misalignment, vibrations, and other dynamic forces. This flexibility is vital in preventing excessive stress and wear on the connected machinery, as well as mitigating the risk of premature failures.

There are various types of industrial couplings available, each designed for specific applications and operating conditions. Some common types of industrial couplings include:

  • 1. Diaphragm Couplings: Diaphragm couplings, as discussed in previous answers, use a thin flexible diaphragm to transmit torque between the shafts. They can accommodate misalignments and dampen vibrations, making them suitable for various industrial applications.
  • 2. Gear Couplings: Gear couplings use gear teeth to transmit torque and are known for their high torque capacity and rigid construction. They are commonly used in heavy-duty applications, such as steel mills and mining equipment.
  • 3. Grid Couplings: Grid couplings use a grid of spring-like elements to transmit torque. They are versatile and can absorb shock loads, making them suitable for applications with varying loads and high shock forces.
  • 4. Jaw Couplings: Jaw couplings use elastomeric elements to connect the shafts and are known for their simplicity and ease of installation. They are commonly used in small to medium-sized machinery.
  • 5. Disc Couplings: Disc couplings use thin metal discs to transmit torque and compensate for misalignments. They are often used in precision applications and systems that require low backlash.

Regardless of the specific type, the working principle of an industrial coupling involves connecting the shaft ends and ensuring a firm grip between them. When torque is applied to one shaft, the coupling transmits that torque to the other shaft, causing both shafts to rotate together at the same speed. The coupling’s design allows for some degree of flexibility, which permits the shafts to compensate for misalignments, axial movements, and vibrations. This flexibility helps protect the connected equipment from stress and damage, promoting smooth operation and extending the lifespan of the machinery.

In summary, industrial couplings are critical components in mechanical systems that facilitate the transfer of torque and motion between rotating shafts. They provide flexibility, misalignment compensation, and vibration dampening, making them essential for reliable and efficient power transmission in various industrial applications.

China factory Standard China Factory Industrial Chain Sprocket Shaft Coupling  China factory Standard China Factory Industrial Chain Sprocket Shaft Coupling
editor by CX 2023-11-16