China manufacturer Industrial Pumps Rolling Bearing Variable Speed Hydraulic Coupling

Product Description

Industrial Pumps Rolling Bearing Variable Speed Hydraulic Coupling

Application:

Hydraulic coincidence machines which are series of products of extensively applied to steel plant, power plant, mine, etc.. After matching with belt machine, grinding machine and machineries that at odds with the community, such as air blower and water pump, hydraulic coincidence machines have the fine characteristics of flexible transmission and isolated and sprain shaking. In addition to that they can economize on electricity in a large amount and they are the energy-conserving product that the country popularized especially.

Our products range:

+YOTCGP series Variable speed fluid coupling
+YOTCG series Variable speed fluid coupling
+YOTCHP series Variable speed fluid coupling
+YOTCHZ series Variable speed fluid coupling
+YOTCQ series Variable speed fluid coupling
+YOTCHF series Variable speed fluid coupling
+Constant fluid coupling, such YOX, TVA series.

Sample Product Photos:

Feature of Technique:

1.Maximum output speed * in the type No. should be specified in order.
2.The rated slip is 1.5-3%.The maximum total mechanical efficiency>=95%.
3..For centrifugal machine-gal with load characteristics of  M a n2 .step less speed regulation over range of 1-1/5 is available.
For constant torque drives with M=C a range of 1-1/3 may be provided.
4.All of these are supported can by rolling bearing or sliding bearing.

YOTCGP TYPE Variable Speed Hydraulic Fluid Coupling Specification:
 

type input rotational speed (r/min) rotation power (kw)
YOTCGP500 1000 20~65
1500 65~210
3000 550~1600
YOTCGP560 1000 35~105
1500 115~340
3000 950~2740
YOTCGP580 1000 35~105
1500 115~410
3000 950~3250
YOTCGP600 750 20~65
1000 50~150
1500 170~500
YOTCGP650 750 30~95
1000 70~220
1500 240~700
YOTCGP700 750 45~135
1000 110~320
1500 350~1000
YOTCGP750 600 30~100
750 60~190
1000 145~460
1500 490~1420
YOTCGP800 600 45~130
750 80~250
1000 200~580
1500 610~1960
YOTCGP875 600 70~200
750 130~410
1000 310~910
1500 1060~3060
YOTCGP920 600 110~330
750 230~675
1000 400~1170
YOTCGP1000 600 130~500
750 250~1571
1000 615~1770
YOTCGP1050 500 125~365
600 220~640
750 400~1150
1000 780~2260
YOTCGP1150 500 180~710
600 310~1250
750 640~1860
1000 1500~4400
YOTCGP1250 500 300~870
600 530~1535
750 790~2280
YOTCGP1320 500 395~1142
600 695~2015
750 1030~2990

Details Photos of YOTCGP Variable Speed hydraulic fluid coupling:

Production Equipment Photos:

Package and Delivery:

Mainly Cooperation Customer:

Power Plant, Cement Mill, Industrial Water Supplier, Raw material yard, ore beneficiation, sinter plant and pellet, coke oven plant, iron making plant, steel making plant.

Successful Projects Feedback:

Note: We also accept the repair work projects, and provide spare parts for variable speed fluid coupling. 
If you have any related projects need our proposal, feel free to contact us.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Industrial coupling

Are there any Safety Considerations or Guidelines Related to the Installation of Industrial Couplings?

Yes, the installation of industrial couplings requires careful attention to safety considerations and adherence to specific guidelines to ensure the coupling functions correctly and safely. Improper installation can lead to coupling failures, equipment damage, and potential hazards for personnel. Here are some essential safety considerations and guidelines related to the installation of industrial couplings:

  • Follow Manufacturer Instructions: Always follow the manufacturer’s installation instructions and guidelines provided with the coupling. Manufacturers have specific recommendations for proper installation, which may vary depending on the coupling type and model.
  • Use Proper Tools and Equipment: Use the appropriate tools and equipment for the installation process. Ensure that torque wrenches and other tools are properly calibrated to achieve the correct bolt torque and avoid over-tightening or under-tightening.
  • Verify Shaft Alignment: Before installing the coupling, verify the alignment of the connected shafts. Proper shaft alignment is crucial to prevent premature wear, vibration, and misalignment-related issues during operation.
  • Ensure Clean Surfaces: Clean and inspect the shaft ends and coupling bore to remove any dirt, debris, or old lubricants. Clean surfaces ensure proper contact and reduce the risk of contamination inside the coupling.
  • Check Coupling Fit: Ensure that the coupling fits properly on the shafts and that there is sufficient clearance between the coupling and surrounding components. Avoid interference that could lead to mechanical binding during operation.
  • Verify Keyway and Key Fit: If the coupling uses a keyway and key for torque transmission, verify that the key fits securely and accurately in the keyway without any play or gaps.
  • Inspect Flexible Elements: For flexible couplings, inspect the flexible elements (e.g., elastomeric inserts or diaphragms) for any damage or defects before installation. Replace damaged elements with new ones as needed.
  • Tighten Bolts Gradually: When tightening coupling bolts, follow a gradual tightening sequence in a star or cross pattern to ensure even distribution of the load. This prevents uneven stress on the coupling and shafts.
  • Use Locking Devices: Consider using appropriate locking devices, such as split washers, locking nuts, or thread-locking compounds, to prevent bolts from loosening during operation.
  • Perform Post-Installation Checks: After installing the coupling, perform post-installation checks to verify proper alignment, bolt tightness, and overall coupling integrity before putting the machinery into full operation.

Following these safety considerations and guidelines is essential to ensure a safe and successful installation of industrial couplings. Regular maintenance and inspections throughout the coupling’s service life are also crucial for identifying potential issues early on and addressing them promptly to prevent accidents or damage to the machinery.

Industrial coupling

Role of Couplings in Vibration Damping and Noise Reduction within Industrial Machinery

Couplings play a crucial role in vibration damping and noise reduction within industrial machinery. Vibrations and noise are common challenges in rotating machinery and power transmission systems, and they can lead to various issues such as increased wear and tear, reduced precision, and even structural damage. Couplings are designed with features to address these challenges and enhance the overall performance of industrial machinery:

  • Vibration Isolation: Flexible couplings, such as elastomeric couplings and gear couplings with elastomeric elements, have inherent vibration-damping properties. These couplings are designed with flexible components, often made of rubber or polyurethane, that can absorb and dissipate vibrational energy. When the machinery experiences dynamic loads or resonance, the flexible coupling dampens these vibrations, preventing them from propagating through the system. This vibration isolation helps protect the connected equipment, bearings, and other components from excessive vibrations and prolongs their lifespan.
  • Noise Reduction: Vibrations in industrial machinery often generate noise, which can be bothersome for operators and personnel working in the vicinity. Couplings with vibration-damping capabilities can also reduce noise levels significantly. By dampening the vibrations at the source, the noise generated by the machinery is minimized. This results in a quieter working environment, improving comfort and safety for workers and reducing noise pollution in the surrounding areas.
  • Misalignment Compensation: In addition to vibration damping, some couplings can accommodate misalignment between connected shafts. Misalignment can cause vibrations and noise in machinery. When the coupling can compensate for both angular and parallel misalignments, it ensures smoother operation and reduces the forces transmitted to the shafts, mitigating vibration-related issues.
  • Torsional Flexibility: Couplings like diaphragm couplings and disc couplings offer torsional flexibility, allowing them to absorb shocks and torsional vibrations in the system. When the machinery experiences sudden torque spikes or starts and stops, these couplings act as shock absorbers, reducing the impact on the connected equipment and the overall system.

By effectively damping vibrations and reducing noise, couplings contribute to the overall health and reliability of industrial machinery. They help prevent premature failures, enhance the accuracy and precision of processes, and improve the overall working environment. Properly selected and installed couplings that cater to the specific requirements of the application can significantly improve the performance, efficiency, and service life of industrial machinery.

Industrial coupling

How do Rigid Couplings Differ from Flexible Couplings in Industrial Applications?

In industrial applications, rigid couplings and flexible couplings serve different purposes and have distinct characteristics that make them suitable for various scenarios. Here’s a detailed comparison of rigid couplings and flexible couplings:

Rigid Couplings:

  • Design: Rigid couplings are solid, one-piece couplings that do not have any flexible elements. They are typically made from materials like steel, aluminum, or other rigid materials.
  • Torque Transmission: Rigid couplings provide a direct and efficient torque transmission between the connected shafts. There is little to no torsional flexibility, resulting in a more rigid connection.
  • Misalignment Compensation: Rigid couplings are not designed to accommodate misalignments between the shafts. Proper alignment during installation is crucial to avoid issues like increased wear, vibrations, and premature failures.
  • Applications: Rigid couplings are commonly used in applications where precise alignment is feasible, and misalignments are minimal or controlled. They are often found in machines that require high-precision positioning and where torsional rigidity is critical.
  • Advantages: Rigid couplings offer high torque capacity, precise shaft alignment, and superior torsional stiffness. They are also straightforward to install and require minimal maintenance.
  • Disadvantages: The lack of flexibility makes rigid couplings unsuitable for applications with misalignments or situations where shock absorption is necessary. They may also transmit vibrations and shocks to connected machinery, leading to increased stress and potential failures.

Flexible Couplings:

  • Design: Flexible couplings have elements or features that provide some degree of flexibility, allowing them to compensate for misalignments and absorb shocks and vibrations.
  • Torque Transmission: Flexible couplings transmit torque while allowing for slight angular and axial misalignments between the shafts. They can dampen vibrations and reduce shocks, protecting the connected machinery.
  • Misalignment Compensation: Flexible couplings are specifically designed to accommodate misalignments, including angular, axial, and parallel misalignments. They can help prevent premature wear and failures caused by misalignment.
  • Applications: Flexible couplings are used in a wide range of industrial applications where misalignments are common or expected. They are suitable for machinery with dynamic loads, varying operating conditions, and potential shaft movements.
  • Advantages: Flexible couplings offer misalignment compensation, vibration dampening, and shock absorption properties. They can improve the overall reliability and lifespan of machinery by reducing stress and wear on components.
  • Disadvantages: Flexible couplings may introduce a certain amount of backlash, which can be a concern in precision applications. Some types of flexible couplings have lower torque capacities compared to rigid couplings.

In summary, the choice between rigid couplings and flexible couplings depends on the specific requirements of the industrial application. Rigid couplings are ideal for applications with precise alignment and high torsional rigidity, while flexible couplings excel in scenarios with misalignments, vibrations, and shock forces. Engineers carefully consider the operating conditions, torque requirements, and misalignment factors to select the most appropriate coupling type, ensuring reliable and efficient power transmission in their industrial setups.

China manufacturer Industrial Pumps Rolling Bearing Variable Speed Hydraulic Coupling  China manufacturer Industrial Pumps Rolling Bearing Variable Speed Hydraulic Coupling
editor by CX 2023-12-27